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Abstract

Forest fires pose a significant threat to ecosystems,
biodiversity and human livelihoods, particularly in
ecologically sensitive regions like the Kodaikanal Hill
range in Tamil Nadu, India. This study integrates
Geographic Information System (GIS)-based Fuzzy
Analytical Hierarchy Process (Fuzzy-AHP) to assess
forest fire susceptibility through a comprehensive
spatial analysis. Key physiographic and climatic
factors including elevation, slope, aspect, temperature,
precipitation and vegetation, were prioritized using
expert judgment and fuzzy logic. These factors were
spatially analyzed to produce a detailed forest fire
susceptibility map for the region. Model validation
using historical fire data demonstrated high accuracy,
classifying 31% of the area as highly susceptible, 30%
as moderately susceptible and 39% as less susceptible.
Proximity analysis further identified vulnerable
infrastructure revealing that 28.68% of road networks
and 30% of settlement areas fall within high-risk zones.

The findings underscore the necessity for targeted
mitigation strategies and highlight the importance of
incorporating spatial tools into forest management and
disaster preparedness. This study provides critical
insights for policymakers, forest managers and disaster
management authorities, enabling informed decision-
making to reduce the adverse impacts of forest fires.

Keywords: Forest Fire Susceptibility, GIS-Based Fuzzy
AHP, Spatial Risk Assessment, Anthropogenic Factors.

Introduction

Forest fires pose a significant environmental threat
impacting ecosystems, economies and societies on a global
scale. Their increasing frequency and intensity are largely
driven by climate change, shifting land-use patterns and
human activities®. In ecologically sensitive regions like the
Kodaikanal Hill range in Tamil Nadu, India, forest fires pose
a significant threat to biodiversity, ecosystem services and
human livelihoods. The Kodaikanal Hill range, part of the
Western Ghats biodiversity hotspot, is characterized by its
rich flora and fauna, steep terrain and diverse climatic
conditions, making it particularly vulnerable to fire
outbreaks'®. Understanding and mitigating the risks
associated with forest fires is therefore essential for
preserving this ecologically significant region. The current
state of research highlights the importance of integrating
advanced geospatial tools and multi-criteria decision-
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making frameworks to assess and predict forest fire
susceptibility. Geographic Information Systems (GIS) and
remote sensing technologies have emerged as indispensable
tools for mapping and monitoring fire-prone areas'’. Fuzzy-
AHP is widely recognized for its capability to address
uncertainties in multi-criteria decision-making, particularly
in fire risk assessment. Studies by Nuthammachot and
Stratoulias?* highlight the effectiveness of integrating GIS
with Fuzzy-AHP for fire susceptibility mapping, reinforcing
the importance of region-specific models that consider
localized topographical and climatic variables.

Despite these advancements, challenges remain in
accurately predicting fire-prone areas implementing targeted
mitigation strategies. For instance, while some studies
prioritize physiographic factors like slope and elevation?,
others emphasize the role of climatic variables such as
temperature and humidity®. This divergence in focus
underscores the complexity of forest fire dynamics and the
need for comprehensive assessments that integrate both
natural and anthropogenic factors. Furthermore, the
influence of human activities including road networks and
settlements, on fire ignition and spread remains a topic of
ongoing debate33.

This study aims to address these gaps by developing a
comprehensive Forest Fire Susceptibility (FFS) map for the
Kodaikanal Hill range using a GIS-based Fuzzy-AHP
approach. The primary objectives include analyzing key
physiographic and climatic factors, integrating these
variables into a spatial model and validating the results using
historical fire data. By identifying high-risk zones and
assessing the vulnerability of anthropogenic infrastructure,
this research seeks to provide actionable insights for
policymakers, forest managers and disaster management
authorities. The findings underscore the importance of
adopting integrated spatial tools for effective forest fire
management and highlight the potential of the Fuzzy-AHP
methodology as a robust framework for risk assessment.

Material and Methods

Study area: The Kodaikanal Hill range, located in Tamil
Nadu's Dindigul district, spans 1820 km2 and is positioned
between 77°14'26"-77°45'28" E longitude and 10°625"-
10°26'54" N latitude. Known as the "Princess of Hill
Stations," this ecologically significant region is celebrated
for its rich biodiversity, pristine landscapes and vital
ecosystem services. The area's varying elevation fosters
distinct vegetation zones, including tropical moist deciduous
forests at lower elevations, subtropical forests at mid-
elevations (1000-2000 m) and Shola forests and grasslands
at higher elevations (>2000 m), making it a global
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biodiversity hotspot. Due to its diverse flora, steep terrain
and varied climate, the region is particularly vulnerable to
forest fires, requiring thorough fire susceptibility
evaluations®13,

The physiography of the region includes undulating terrain,
steep slopes, ridges and narrow valleys, with significant
features like Bajada, Barren Slopes and Escarpments.
Human settlements are primarily located in isolated pockets
with agriculture as the main livelihood. The Kodaikanal Hill
Range’s fire season typically runs from February to June,
peaking in May, with historical data highlighting the severe
ecological threat posed by wildfires that have caused
extensive forest cover loss, underscoring the need for
effective fire management strategies?®.

Methodology: This study aimed to assess and map forest
fire susceptibility (FFS) in the Kodaikanal Hill range, Tamil
Nadu, India, using a structured three-phase methodology.
The first phase involved selecting and categorizing factors
influencing ~ fire  susceptibility ~ which  included
physiographic, climatic and anthropogenic parameters such
as elevation, slope, terrain ruggedness, land cover, rainfall,
land surface temperature and wind speed. Data for these
parameters were sourced from reputable datasets like
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Landsat 9 OLI/TIRS, ASTER GDEM, Copernicus C3S,
Wind Atlas and IMD611.153034 |n the second phase, a GIS-
based fuzzy analytical hierarchy process (Fuzzy-AHP) was
employed to integrate these factors, applying fuzzy logic to
account for uncertainties in expert judgments. Pairwise
comparison matrices were created to assign weights to each
factor and GIS-based overlay analysis was used to generate
a composite FFS map, classifying the study area into five
susceptibility zones based on quantile methods?3>,

The third phase focused on validating the FFS map using
historical fire data from the Visible Infrared Imaging
Radiometer Suite (VIIRS) for 2023 and 2024, with model
accuracy assessed using the receiver operating
characteristic-area under curve (ROC-AUC) method?*. All
datasets were standardized to a 30-meter spatial resolution
for compatibility in GIS analysis. The methodology,
utilizing ArcGIS Pro for data processing, enabled the
creation of a clear FFS map that aids in identifying high-risk
fire zones, supporting better forest management and disaster
preparedness. This approach provided a reliable and
comprehensive assessment of forest fire susceptibility,
integrating diverse data sources and advanced spatial
analysis techniques to address fire risks in the region.
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Figure 1: Location Map of Kodaikanal Hill Range
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Results

Rainfall: Rainfall is a critical climatic parameter influencing
forest fire susceptibility. In the Kodaikanal region, annual
rainfall was classified into five categories: very low (594—
758 mm), low (759-850 mm), moderate (851-950 mm),
high (951-1050 mm) and very high (1060-1350 mm). Areas
with very low rainfall experience limited moisture
availability, increasing fire risk, while regions with very high
rainfall are less prone to fires due to lush vegetation and
damp conditions®.

Relative Humidity: Relative humidity affects the dryness
of vegetative fuels. Low humidity levels temporarily
increase fire risk by drying out potential fuel. In the
Kodaikanal region, relative humidity was classified into five
categories: very low (53.71-55.5%), low (55.5-57%),
moderate (57-58.5%), high (58.5-60.5%) and very high
(60.5-62.84%). Higher humidity levels reduce fire
susceptibility by limiting fuel dryness?®.

Wind Speed: Wind speed significantly influences fire
behavior by accelerating fire spread and intensity. In the
study area, wind speed was categorized into five classes:
very low (0.76-2.5 m/s), low (2.5-4 m/s), moderate (4-5.5
m/s), high (5.5-7 m/s) and very high (7—11 m/s). Very high
wind speeds can cause extreme fire behavior and rapid
spread over large areas’.

Soil Moisture: Soil moisture is critical in determining forest
fire susceptibility, as it directly influences vegetation
flammability and overall fire risk. In this study, the soil
moisture index (SMI) was derived from Landsat 9 satellite
imagery using a formula based on land surface temperature
(LST) extremes.

SMI = (LSTpax—LSTpmin)
(LSTpqx—LST)

where LST max and LST min represent the maximum and
minimum land surface temperatures within a given area
respectively and LST is the pixel-specific land surface
temperature. The SMI values were classified into five
categories: very low (1.88-2.17), low (2.18-2.28), moderate
(2.29-2.37), high (2.38-2.49) and very high (2.50-2.88).
Areas with low SMI values are more susceptible to fires due
to dry soil, while high SMI values indicate moist conditions
that help to reduce fire risk. This classification provides
insights for identifying high-risk zones and implementing
fire management strategies in ecologically sensitive regions
like the Kodaikanal Hill Range?*.

Land Surface Temperature (LST): Landsat 9 thermal
bands provide crucial insights into Land Surface
Temperature (LST), a key determinant of forest fire risk.
Variations in LST impact vegetation moisture levels,
influencing fuel dryness and ignition potential. Elevated
LST readings correspond to intensified surface heating,
leading to faster vegetation desiccation and an increased
likelihood of fire outbreaks. In the Kodaikanal Hill range,
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LST was calculated using a systematic methodology that
involved several steps:

I. Conversion of Top of Atmospheric (TOA) Spectral
Radiance to Brightness Temperature: The raw digital
numbers (DN) from the thermal bands were converted into
TOA spectral radiance using the formula:

TOA(L) = ML x Qcal + AL

where ML is the multiplicative rescaling factor, Qcal is the
quantized calibrated pixel value and AL is the additive
rescaling factor.

Il. Brightness Temperature Calculation: The TOA
spectral radiance was then converted into brightness
temperature (BT) using Planck’s equation:

BT =In(LK1+1)K2 —273.15

Here, K1 and K2 are calibration constants specific to the
thermal bands and L represents the TOA spectral radiance.

I11. Estimation of Emissivity (€): Emissivity was estimated
using the proportion of vegetation (Pv), which was
calculated based on NDVI values:

e = 0.004 x Pv + 0.986

IV. Final LST Computation: The final LST was derived
using the formula:

LST = 14+ W x BT x In(¢) BT
where W is the wavelength of emitted radiance (11.5 pum).

The derived LST values were classified into five categories:
very low (<20°C), low (20-25°C), moderate (25-30°C),
high (30-35°C) and very high (>35°C). Areas with very high
LST (>35°C) were identified as critical hotspots for forest
fire susceptibility due to their association with sparse
vegetation and prolonged dry conditions. These classified
LST layers were integrated with other climatic variables
such as rainfall, relative humidity and wind speed, to assess
their combined impact on fire risk?®. This approach provided
a comprehensive understanding of how temperature
dynamics contribute to fire susceptibility across the study
area.

Land use/land cover (LULC): Land use/land cover
(LULC) plays a vital role in assessing forest fire
susceptibility by influencing the availability of fuel and the
spread of fires. In the Kodaikanal Hill range, LULC was
categorized into forests, plantations, croplands, barren lands
and water bodies, with forests and scrublands considered
high-risk areas due to abundant dry vegetation. Water bodies
and agricultural lands act as natural firebreaks, reducing fire
risks. To map LULC, supervised classification using satellite
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imagery and ground-truth data was employed, with
algorithms like Maximum Likelihood Classification (MLC)
or Support Vector Machines (SVM) used for accurate
classification”?%. The resulting map, combined with other
factors such as vegetation moisture and historical fire data,
supports the identification of high-risk areas and effective
fire management strategies®®.

Normalized Difference Vegetation Index (NDVI): The
Normalized Difference Vegetation Index (NDV1) is a widely
used remote sensing index that measures vegetation health
and density based on the reflectance of near-infrared (NIR)
and red light. It is calculated using the following formula:

(NIR+Red)
NDVI = (NIR=Red
In this study, NDVI values derived from Landsat 9
OLITIRS imagery were classified into five categories to
assess forest fire susceptibility: very low (-0.23t0 0.17), low
(0.18 to 0.25), moderate (0.26 to 0.32), high (0.33 to 0.38)
and very high (0.39 to 0.6). Lower NDVI values indicate
sparse or stressed vegetation, which is more susceptible to
fires due to reduced moisture and fuel load, while higher
NDVI values represent denser vegetation, which is less
prone to ignition but may intensify fires under dry
conditions. NDVI also aids in post-fire recovery
assessments, identifying areas of significant vegetation loss
which is crucial for restoration efforts'4?%. By integrating
NDVI with elevation and other physiographic data, this
analysis provides insights for targeted fire management and
mitigation strategies in ecologically sensitive regions like
the Kodaikanal Hill range.

Differenced Normalized Burn Ratio (dNBR): The
Differenced Normalized Burn Ratio (ANBR) is a critical
index used to assess the severity of wildfires and monitor
post-fire recovery in ecosystems. It quantifies changes in
vegetation and surface conditions by comparing pre- and
post-fire Normalized Burn Ratio (NBR) values which are
derived from satellite imagery using the formula:

__ (NIR+SWIR)

NBR = (NIR-SWIR)

where NIR is the near-infrared band and SWIR is the
shortwave infrared band. The dNBR is derived by
subtracting post-fire NBR from pre-fire NBR, helping to
quantify fire intensity and impact. In this study, Landsat 9
imagery was used to calculate dNBR values for the
Kodaikanal Hill range, which were classified into three
categories: low (-0.81 to -0.28), moderate (-0.27 to -0.062)
and high (-0.061 to 0.62). Higher dNBR values indicate
severe disturbances and areas more prone to future fires,
while lower values suggest minimal vegetation change and
reduced fire risk. This classification assists in forest
management by highlighting high-risk areas for restoration
and prevention efforts®3. Integrating dNBR with other
environmental factors provides critical insights for wildfire
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mitigation in ecologically sensitive regions like the
Kodaikanal Hill range.

Elevation: Elevation indirectly influences forest fire
susceptibility by affecting temperature, precipitation and
vegetation types. In the Kodaikanal Hill range. Elevation
was classified into five categories: 344-750 meters, 750—
1100 meters, 1100-1500 meters, 1500-2000 meters and
2000-2542 meters. Lower elevations, characterized by
higher temperatures and sparse vegetation, are more
susceptible to fires. In contrast, higher elevations with cooler
temperatures and increased moisture exhibit reduced fire
risk but remain vulnerable during prolonged dry spells3Z.

Aspect: Aspect refers to the orientation of slopes and plays
a crucial role in determining solar exposure, moisture
retention and wind patterns. South-southeast-facing slopes
in the Kodaikanal region are particularly susceptible to fires
due to higher solar radiation and reduced moisture levels.
Aspect was classified into eight directional categories
including North, South, East, West, Northeast, Northwest,
Southeast and Southwest, to capture its influence on fire
dynamics?®.

Curvature: Curvature measures the shape of the terrain and
is categorized into convex, planar and concave zones.
Convex slopes, often exposed to higher wind speeds and
faster drying of vegetation, are more prone to fires. Concave
areas such as valleys, retain moisture for longer periods,
reducing fire susceptibility. The distribution of curvature
types significantly influences fire ignition and spread
patterns?®,

Terrain  Ruggedness Index (TRI): The Terrain
Ruggedness Index (TRI) quantifies the complexity of the
terrain by measuring elevation changes within a specific
neighborhood. TRI values in the study area ranged from
smooth (0-0.286) to highly rough (0.656-1). Areas with
higher TRI values represent rugged terrains that can act as
natural barriers to fire spread. However, these areas also
hinder firefighting efforts due to their inaccessibility.
Conversely, smoother terrains with lower TRI values are
more prone to rapid fire propagation due to uniform
topography?.

GIS-based fuzzy analytical hierarchy process (FUZZY -
AHP): The Analytical Hierarchy Process (AHP), developed
by Saaty?°, is a widely-used multi-criteria decision-making
tool that structures complex problems into hierarchical
levels. It synthesizes expert opinions and is applied in both
academic and industrial settings to tackle decision-making
challenges. Despite its broad use, AHP faces limitations such
as reduced effectiveness when the number of criteria and
alternatives increase. Difficulty in handling the ambiguity is
inherent in expert judgments. These limitations can impact
the method's performance, especially in real-world
applications!®?, To address these shortcomings, the
integration of fuzzy logic (FL) into AHP, known as Fuzzy-
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AHP, has gained traction. Fuzzy logic, proposed by Zadeh,
deals with uncertainty by using membership values between
0 and 1 which represent the degree of an element’s
association within a set. Fuzzy-AHP helps to overcome the
ambiguity in expert judgment and is particularly effective in
situations where precise data is unavailable. The
combination of qualitative and quantitative methods makes
Fuzzy-AHP ideal for applications like forest fire
susceptibility mapping where linguistic terms are assigned
numerical values and fuzzy numbers represent the relative
importance of factors®3%%,

Geometric mean fuzzy-AHP method: In this study,
Buckley’s* Fuzzy-AHP method was employed to analyze
forest fire risk factors and delineate susceptibility zones. The
process followed several key steps:

Vol. 19 (1) January (2026)

The primary objective was established and a hierarchical
structure was constructed to identify risk factors and their
corresponding sub-factors. A pairwise comparison matrix
was created where each element [dj]k represents the
preference of the k" expert for risk factor i over risk factor j.
The reciprocal relationship is given by (@j)-(@ji)=1 (Saaty)?°.

The average pairwise comparison matrix [a] was computed
by averaging the preferences of all experts using equation

Q)

_ ¥R (aiji+aij2 +-+aijk)
Ay ===t - 1)

where n denotes the number of experts involved.
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Figure 3: Forest Fire Inducing Parameters
(a) Rainfall; (b) Relative Humidity; (c) Soil Moisture; (d) Wind Speed; (e) LST; (f) LULC; (g) NDVI; (h) dNBR;
(i) elevation; (j) Slope; (k) Aspect; (I) Curvature; (m)TRI
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The AHP weights were calculated and validated based on the
consistency ratio (CR). If CR>0.10, the matrix was revised
to ensure reliability?®. A fuzzy pairwise comparison matrix
a was constructed, with elements represented as fuzzy
values derived from the linguistic scale and triangular fuzzy
number (TFN) conversion methods*.

The fuzzy geometric mean for each risk factor Ri was

estimated using equation (2):

Ry = {[T1 A} = Ry % Big % By v B)/m (2
i =Ulj=14ij; " = (A * A Az *... Apy) (2

The vector of fuzzy geometric risk factors was then
formulated as:
Ri = [Rll Rz, R3, ,Rn ]T

The fuzzy relative weights Wi, were determined using
equation (3):

W; =R+ 2}, Rj]_l (3)

The fuzzy weights were converted into crisp values using the
CoA method, as shown in equation (4):

Wi =

LW; +MW;+UW;
i - i i (4)

The de-fuzzified weights were standardized using equation
():
Wy = Wi/ Qizy w )

Finally, all thematic layers were combined to generate the
FFS map using equation (6):
FFS = ¥i_1x;. Wy; (6)

where Wh; represents the normalized fuzzy weight for factor
Xi.
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Forest fire susceptibility mapping: The Forest fire
susceptibility (FFS) mapping in the Kodaikanal Hill Range
was conducted using a GIS-based Fuzzy Analytical
Hierarchy Process (Fuzzy-AHP), which integrated thirteen
key factors influencing forest fire occurrence. These factors,
categorized into physiographic and climatic elements, were
ranked in terms of influence through pairwise comparison
matrices based on expert judgment and fuzzy logic. The
climatic factors ranked highest in influence, followed by
physiographic ones, with rainfall, relative humidity and
windspeed being the top contributors. Fuzzy weights for
each factor were calculated and validated with a consistency
ratio (CR) of 0.091, below the acceptable threshold of 0.1,
confirming the robustness of the methodology?°.

The final FFS map was generated by integrating normalized
weights into thematic layers using ArcGIS, classifying the
study area into five susceptibility zones. Approximately
31% of the Kodaikanal Hill Range was found to have high
or very high fire susceptibility, primarily in lower elevations
with dense vegetation, steep slopes and proximity to human
settlements. Higher elevations, with cooler climates and
sparse vegetation, exhibited lower fire risk. These results
align with findings from similar ecologically sensitive
regions, providing valuable insights for fire management
and mitigation strategies?.

MAP validation using ROC-AUC: To ensure model
reliability, the Forest Fire Susceptibility (FFS) map
underwent validation using VIIRS-derived historical fire
data (375m resolution) from 2023 and 2024. Performance
assessment through Receiver Operating Characteristic—Area
Under Curve (ROC-AUC) analysis yielded a high accuracy
score of 0.824, confirming the robustness of the model's
predictive capabilities. This outcome underscores the
effectiveness of the GIS-based Fuzzy-AHP methodology in
capturing the complexities of forest fire risk assessment and
highlights its potential as a reliable tool for spatial risk
mapping?’.
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Figure 4: Forest Fire Susceptibility Map
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Figure 8: Road Networks Vulnerability Map

Analysis of vulnerability to forest fires by anthropogenic
factors: The vulnerability of anthropogenic infrastructure to
forest fires was further analyzed by overlaying the FFS map
with road networks and settlement areas. The results
indicated that approximately 28.68% of the total road length
(155.48 km out of 542 km) and 30% of settlement areas
(10.32 sg. km out of 24.6 sq. km) fall within high or very
high susceptibility zones. Roads and settlements in these
areas act as both ignition points and conduits for fire spread,
particularly in regions with dry vegetation and steep slopes.
These findings emphasize the critical role of anthropogenic
factors in exacerbating forest fire risks and underscore the
need for targeted mitigation strategies such as creating
firebreaks, regulating human activities near forest edges and
enhancing firefighting resources in vulnerable zones®.

Discussion

The spatial analysis of fire susceptibility demonstrated
considerable variability across the Kodaikanal Hill Range.
Areas at lower elevations, especially those covered by
tropical moist deciduous forests, exhibited heightened
vulnerability due to conducive climatic factors and
intensified human presence. In contrast, higher elevations,
characterized by Shola forests and grasslands, exhibited
lower susceptibility attributed to cooler temperatures, higher
moisture levels and reduced human interference. Elevation
emerged as a key indirect factor influencing fire
vulnerability by regulating parameters such as temperature,
rainfall and vegetation type?’.

The integration of physiographic and climatic factors
through the Fuzzy-AHP approach provided a comprehensive
understanding of forest fire dynamics in the region. The
model’s ability to accurately classify high-risk zones was
validated using historical fire data, demonstrating its utility
for informed decision-making in forest fire management.
These findings offer critical insights for policymakers, forest
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managers and disaster management authorities, enabling the
formulation of region-specific strategies to mitigate the
adverse impacts of forest fires while promoting ecological
conservation®#,

Future Perspectives

o Establish firebreaks near roads and settlements using
fire-resistant, climate-adapted plants to prevent fire
spread during extreme weather conditions.

e Focus on planting fire-resistant species that can
withstand changing climate patterns, reducing fuel loads
and enhancing ecosystem resilience.

o Enforce stricter controls on open burning and agricultural
fires, particularly during dry seasons, to minimize
human-induced fire risks.

e Use real-time climate and weather data to improve fire
predictions and enhance early warning systems, focusing
on temperature and rainfall patterns.

e Educate local populations on fire prevention, using both
local knowledge and climate data to adapt to shifting fire
risks.

Conclusion

The Kodaikanal Hill range, known for its rich biodiversity
and ecological importance, faces significant forest fire risks
due to a combination of physiographic, climatic and human-
related factors. This study employed a GIS-based Fuzzy
Analytical Hierarchy Process (Fuzzy-AHP) to develop a
comprehensive Forest Fire Susceptibility (FFS) map,
integrating critical factors such as slope, vegetation density,
elevation, climatic variables and proximity to human
settlements. The analysis revealed that approximately
31.26% of the region was classified as highly or very highly
susceptible to forest fires, with physiographic factors like
slope, vegetation density (NDVI) and curvature being
primary contributors. Climatic factors, such as temperature
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and wind speed, further intensified the fire risk. Model
validation with historical fire data resulted in a strong Area
under Curve (AUC) score of 0.824, confirming the accuracy
and reliability of the methodology. Human factors, including
road networks and settlement proximity, also exacerbated
fire risks, with 28.68% of road length and 30% of settlements
found in high-risk zones. Lower elevations, characterized by
higher temperatures and dense vegetation, emerged as the
most fire-prone, while higher elevations exhibited reduced
susceptibility.

The study underscores the urgency of implementing
strategic  fire  mitigation measures including the
establishment of firebreaks near critical infrastructures,
restricting human interventions in high-risk zones and
fostering afforestation with fire-resistant plant species.
Despite some limitations, including expert-driven fuzzy
weight assignments and dataset constraints, this study
provides valuable insights for forest managers and
policymakers in the Kodaikanal Hill range, offering a robust
framework for forest fire management. Future studies could
expand the GIS-Fuzzy AHP approach to other ecologically
sensitive regions and incorporate real-time fire data to
enhance early warning systems and resource allocation®.
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