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Abstract 
Forest fires pose a significant threat to ecosystems, 

biodiversity and human livelihoods, particularly in 

ecologically sensitive regions like the Kodaikanal Hill 

range in Tamil Nadu, India. This study integrates 

Geographic Information System (GIS)-based Fuzzy 

Analytical Hierarchy Process (Fuzzy-AHP) to assess 

forest fire susceptibility through a comprehensive 

spatial analysis. Key physiographic and climatic 

factors including elevation, slope, aspect, temperature, 

precipitation and vegetation, were prioritized using 

expert judgment and fuzzy logic. These factors were 

spatially analyzed to produce a detailed forest fire 

susceptibility map for the region. Model validation 

using historical fire data demonstrated high accuracy, 

classifying 31% of the area as highly susceptible, 30% 

as moderately susceptible and 39% as less susceptible. 

Proximity analysis further identified vulnerable 

infrastructure revealing that 28.68% of road networks 

and 30% of settlement areas fall within high-risk zones.  

 

The findings underscore the necessity for targeted 

mitigation strategies and highlight the importance of 

incorporating spatial tools into forest management and 

disaster preparedness. This study provides critical 

insights for policymakers, forest managers and disaster 

management authorities, enabling informed decision-

making to reduce the adverse impacts of forest fires. 
 
Keywords: Forest Fire Susceptibility, GIS-Based Fuzzy 

AHP, Spatial Risk Assessment, Anthropogenic Factors. 

 

Introduction  
Forest fires pose a significant environmental threat 

impacting ecosystems, economies and societies on a global 

scale. Their increasing frequency and intensity are largely 

driven by climate change, shifting land-use patterns and 

human activities3. In ecologically sensitive regions like the 

Kodaikanal Hill range in Tamil Nadu, India, forest fires pose 

a significant threat to biodiversity, ecosystem services and 

human livelihoods. The Kodaikanal Hill range, part of the 

Western Ghats biodiversity hotspot, is characterized by its 

rich flora and fauna, steep terrain and diverse climatic 

conditions, making it particularly vulnerable to fire 

outbreaks19. Understanding and mitigating the risks 

associated with forest fires is therefore essential for 

preserving this ecologically significant region. The current 

state of research highlights the importance of integrating 

advanced geospatial tools and multi-criteria decision-

making frameworks to assess and predict forest fire 

susceptibility. Geographic Information Systems (GIS) and 

remote sensing technologies have emerged as indispensable 

tools for mapping and monitoring fire-prone areas17. Fuzzy-

AHP is widely recognized for its capability to address 

uncertainties in multi-criteria decision-making, particularly 

in fire risk assessment. Studies by Nuthammachot and 

Stratoulias24 highlight the effectiveness of integrating GIS 

with Fuzzy-AHP for fire susceptibility mapping, reinforcing 

the importance of region-specific models that consider 

localized topographical and climatic variables. 
 

Despite these advancements, challenges remain in 

accurately predicting fire-prone areas implementing targeted 

mitigation strategies. For instance, while some studies 

prioritize physiographic factors like slope and elevation2, 

others emphasize the role of climatic variables such as 

temperature and humidity36. This divergence in focus 

underscores the complexity of forest fire dynamics and the 

need for comprehensive assessments that integrate both 

natural and anthropogenic factors. Furthermore, the 

influence of human activities including road networks and 

settlements, on fire ignition and spread remains a topic of 

ongoing debate33.  
 

This study aims to address these gaps by developing a 

comprehensive Forest Fire Susceptibility (FFS) map for the 

Kodaikanal Hill range using a GIS-based Fuzzy-AHP 

approach. The primary objectives include analyzing key 

physiographic and climatic factors, integrating these 

variables into a spatial model and validating the results using 

historical fire data. By identifying high-risk zones and 

assessing the vulnerability of anthropogenic infrastructure, 

this research seeks to provide actionable insights for 

policymakers, forest managers and disaster management 

authorities. The findings underscore the importance of 

adopting integrated spatial tools for effective forest fire 

management and highlight the potential of the Fuzzy-AHP 

methodology as a robust framework for risk assessment.  
 

Material and Methods 
Study area: The Kodaikanal Hill range, located in Tamil 

Nadu's Dindigul district, spans 1820 km² and is positioned 

between 77°14'26"–77°45'28" E longitude and 10°6'25"–

10°26'54" N latitude. Known as the "Princess of Hill 

Stations," this ecologically significant region is celebrated 

for its rich biodiversity, pristine landscapes and vital 

ecosystem services. The area's varying elevation fosters 

distinct vegetation zones, including tropical moist deciduous 

forests at lower elevations, subtropical forests at mid-

elevations (1000–2000 m) and Shola forests and grasslands 

at higher elevations (>2000 m), making it a global 
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biodiversity hotspot. Due to its diverse flora, steep terrain 

and varied climate, the region is particularly vulnerable to 

forest fires, requiring thorough fire susceptibility 

evaluations8,13. 

 

The physiography of the region includes undulating terrain, 

steep slopes, ridges and narrow valleys, with significant 

features like Bajada, Barren Slopes and Escarpments. 

Human settlements are primarily located in isolated pockets 

with agriculture as the main livelihood. The Kodaikanal Hill 

Range’s fire season typically runs from February to June, 

peaking in May, with historical data highlighting the severe 

ecological threat posed by wildfires that have caused 

extensive forest cover loss, underscoring the need for 

effective fire management strategies10. 

 

Methodology: This study aimed to assess and map forest 

fire susceptibility (FFS) in the Kodaikanal Hill range, Tamil 

Nadu, India, using a structured three-phase methodology. 

The first phase involved selecting and categorizing factors 

influencing fire susceptibility which included 

physiographic, climatic and anthropogenic parameters such 

as elevation, slope, terrain ruggedness, land cover, rainfall, 

land surface temperature and wind speed. Data for these 

parameters were sourced from reputable datasets like 

Landsat 9 OLI/TIRS, ASTER GDEM, Copernicus C3S, 

Wind Atlas and IMD6,11,15,30,34. In the second phase, a GIS-

based fuzzy analytical hierarchy process (Fuzzy-AHP) was 

employed to integrate these factors, applying fuzzy logic to 

account for uncertainties in expert judgments. Pairwise 

comparison matrices were created to assign weights to each 

factor and GIS-based overlay analysis was used to generate 

a composite FFS map, classifying the study area into five 

susceptibility zones based on quantile methods29,35. 

 

The third phase focused on validating the FFS map using 

historical fire data from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) for 2023 and 2024, with model 

accuracy assessed using the receiver operating 

characteristic–area under curve (ROC-AUC) method21. All 

datasets were standardized to a 30-meter spatial resolution 

for compatibility in GIS analysis. The methodology, 

utilizing ArcGIS Pro for data processing, enabled the 

creation of a clear FFS map that aids in identifying high-risk 

fire zones, supporting better forest management and disaster 

preparedness. This approach provided a reliable and 

comprehensive assessment of forest fire susceptibility, 

integrating diverse data sources and advanced spatial 

analysis techniques to address fire risks in the region. 

 

 
Figure 1: Location Map of Kodaikanal Hill Range 



    Disaster Advances                                                                                                                          Vol. 19 (1) January (2026) 

https://doi.org/10.25303/191da082092        84 

Results 
Rainfall: Rainfall is a critical climatic parameter influencing 

forest fire susceptibility. In the Kodaikanal region, annual 

rainfall was classified into five categories: very low (594–

758 mm), low (759–850 mm), moderate (851–950 mm), 

high (951–1050 mm) and very high (1060–1350 mm). Areas 

with very low rainfall experience limited moisture 

availability, increasing fire risk, while regions with very high 

rainfall are less prone to fires due to lush vegetation and 

damp conditions15. 

 

Relative Humidity: Relative humidity affects the dryness 

of vegetative fuels. Low humidity levels temporarily 

increase fire risk by drying out potential fuel. In the 

Kodaikanal region, relative humidity was classified into five 

categories: very low (53.71–55.5%), low (55.5–57%), 

moderate (57–58.5%), high (58.5–60.5%) and very high 

(60.5–62.84%). Higher humidity levels reduce fire 

susceptibility by limiting fuel dryness25. 

 

Wind Speed: Wind speed significantly influences fire 

behavior by accelerating fire spread and intensity. In the 

study area, wind speed was categorized into five classes: 

very low (0.76–2.5 m/s), low (2.5–4 m/s), moderate (4–5.5 

m/s), high (5.5–7 m/s) and very high (7–11 m/s). Very high 

wind speeds can cause extreme fire behavior and rapid 

spread over large areas11. 

 

Soil Moisture: Soil moisture is critical in determining forest 

fire susceptibility, as it directly influences vegetation 

flammability and overall fire risk. In this study, the soil 

moisture index (SMI) was derived from Landsat 9 satellite 

imagery using a formula based on land surface temperature 

(LST) extremes.  

 

𝑆𝑀𝐼 =  
(𝐿𝑆𝑇𝑀𝑎𝑥−𝐿𝑆𝑇𝑀𝑖𝑛)

(𝐿𝑆𝑇𝑀𝑎𝑥−𝐿𝑆𝑇)
 

 

where LST max  and LST min  represent the maximum and 

minimum land surface temperatures within a given area 

respectively and LST is the pixel-specific land surface 

temperature. The SMI values were classified into five 

categories: very low (1.88–2.17), low (2.18–2.28), moderate 

(2.29–2.37), high (2.38–2.49) and very high (2.50–2.88). 

Areas with low SMI values are more susceptible to fires due 

to dry soil, while high SMI values indicate moist conditions 

that help to reduce fire risk. This classification provides 

insights for identifying high-risk zones and implementing 

fire management strategies in ecologically sensitive regions 

like the Kodaikanal Hill Range24. 
 

Land Surface Temperature (LST): Landsat 9 thermal 

bands provide crucial insights into Land Surface 

Temperature (LST), a key determinant of forest fire risk. 

Variations in LST impact vegetation moisture levels, 

influencing fuel dryness and ignition potential. Elevated 
LST readings correspond to intensified surface heating, 

leading to faster vegetation desiccation and an increased 

likelihood of fire outbreaks. In the Kodaikanal Hill range, 

LST was calculated using a systematic methodology that 

involved several steps:  

 

I. Conversion of Top of Atmospheric (TOA) Spectral 

Radiance to Brightness Temperature: The raw digital 

numbers (DN) from the thermal bands were converted into 

TOA spectral radiance using the formula:  

 

𝑇𝑂𝐴(𝐿) = 𝑀𝐿 × 𝑄𝑐𝑎𝑙 + 𝐴𝐿 

 

where ML is the multiplicative rescaling factor, Qcal is the 

quantized calibrated pixel value and AL is the additive 

rescaling factor.  

 

II. Brightness Temperature Calculation: The TOA 

spectral radiance was then converted into brightness 

temperature (BT) using Planck’s equation:  

 

𝐵𝑇 = ln(𝐿 𝐾1 + 1) 𝐾2  − 273.15 

 

Here, K1 and K2 are calibration constants specific to the 

thermal bands and L represents the TOA spectral radiance.  

 

III. Estimation of Emissivity (ε): Emissivity was estimated 

using the proportion of vegetation (Pv), which was 

calculated based on NDVI values:  

 

𝜀 =  0.004 × 𝑃𝑣 + 0.986 
 

IV. Final LST Computation: The final LST was derived 

using the formula:  

 

𝐿𝑆𝑇 =  1 + 𝑊 × 𝐵𝑇 × ln(𝜀) 𝐵𝑇  
 

where W is the wavelength of emitted radiance (11.5 µm).  

 

The derived LST values were classified into five categories: 

very low (<20°C), low (20–25°C), moderate (25–30°C), 

high (30–35°C) and very high (>35°C). Areas with very high 

LST (>35°C) were identified as critical hotspots for forest 

fire susceptibility due to their association with sparse 

vegetation and prolonged dry conditions. These classified 

LST layers were integrated with other climatic variables 

such as rainfall, relative humidity and wind speed, to assess 

their combined impact on fire risk26. This approach provided 

a comprehensive understanding of how temperature 

dynamics contribute to fire susceptibility across the study 

area. 

 

Land use/land cover (LULC): Land use/land cover 

(LULC) plays a vital role in assessing forest fire 

susceptibility by influencing the availability of fuel and the 

spread of fires. In the Kodaikanal Hill range, LULC was 

categorized into forests, plantations, croplands, barren lands 

and water bodies, with forests and scrublands considered 

high-risk areas due to abundant dry vegetation. Water bodies 

and agricultural lands act as natural firebreaks, reducing fire 

risks. To map LULC, supervised classification using satellite 
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imagery and ground-truth data was employed, with 

algorithms like Maximum Likelihood Classification (MLC) 

or Support Vector Machines (SVM) used for accurate 

classification17,25. The resulting map, combined with other 

factors such as vegetation moisture and historical fire data, 

supports the identification of high-risk areas and effective 

fire management strategies19. 

 

Normalized Difference Vegetation Index (NDVI): The 

Normalized Difference Vegetation Index (NDVI) is a widely 

used remote sensing index that measures vegetation health 

and density based on the reflectance of near-infrared (NIR) 

and red light. It is calculated using the following formula: 

 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅+𝑅𝑒𝑑)

(𝑁𝐼𝑅−𝑅𝑒𝑑)
  

 

In this study, NDVI values derived from Landsat 9 

OLI/TIRS imagery were classified into five categories to 

assess forest fire susceptibility: very low (-0.23 to 0.17), low 

(0.18 to 0.25), moderate (0.26 to 0.32), high (0.33 to 0.38) 

and very high (0.39 to 0.6). Lower NDVI values indicate 

sparse or stressed vegetation, which is more susceptible to 

fires due to reduced moisture and fuel load, while higher 

NDVI values represent denser vegetation, which is less 

prone to ignition but may intensify fires under dry 

conditions. NDVI also aids in post-fire recovery 

assessments, identifying areas of significant vegetation loss 

which is crucial for restoration efforts14,25. By integrating 

NDVI with elevation and other physiographic data, this 

analysis provides insights for targeted fire management and 

mitigation strategies in ecologically sensitive regions like 

the Kodaikanal Hill range. 

 

Differenced Normalized Burn Ratio (dNBR): The 

Differenced Normalized Burn Ratio (dNBR) is a critical 

index used to assess the severity of wildfires and monitor 

post-fire recovery in ecosystems. It quantifies changes in 

vegetation and surface conditions by comparing pre- and 

post-fire Normalized Burn Ratio (NBR) values which are 

derived from satellite imagery using the formula:  

 

𝑁𝐵𝑅 =  
(NIR+SWIR)

(NIR−SWIR)
 

 

where NIR is the near-infrared band and SWIR is the 

shortwave infrared band. The dNBR is derived by 

subtracting post-fire NBR from pre-fire NBR, helping to 

quantify fire intensity and impact. In this study, Landsat 9 

imagery was used to calculate dNBR values for the 

Kodaikanal Hill range, which were classified into three 

categories: low (-0.81 to -0.28), moderate (-0.27 to -0.062) 

and high (-0.061 to 0.62). Higher dNBR values indicate 

severe disturbances and areas more prone to future fires, 

while lower values suggest minimal vegetation change and 

reduced fire risk. This classification assists in forest 

management by highlighting high-risk areas for restoration 

and prevention efforts9,33. Integrating dNBR with other 

environmental factors provides critical insights for wildfire 

mitigation in ecologically sensitive regions like the 

Kodaikanal Hill range. 

 

Elevation: Elevation indirectly influences forest fire 

susceptibility by affecting temperature, precipitation and 

vegetation types. In the Kodaikanal Hill range. Elevation 

was classified into five categories: 344–750 meters, 750–

1100 meters, 1100–1500 meters, 1500–2000 meters and 

2000–2542 meters. Lower elevations, characterized by 

higher temperatures and sparse vegetation, are more 

susceptible to fires. In contrast, higher elevations with cooler 

temperatures and increased moisture exhibit reduced fire 

risk but remain vulnerable during prolonged dry spells31. 

 

Aspect: Aspect refers to the orientation of slopes and plays 

a crucial role in determining solar exposure, moisture 

retention and wind patterns. South-southeast-facing slopes 

in the Kodaikanal region are particularly susceptible to fires 

due to higher solar radiation and reduced moisture levels. 

Aspect was classified into eight directional categories 

including North, South, East, West, Northeast, Northwest, 

Southeast and Southwest, to capture its influence on fire 

dynamics16. 

 

Curvature: Curvature measures the shape of the terrain and 

is categorized into convex, planar and concave zones. 

Convex slopes, often exposed to higher wind speeds and 

faster drying of vegetation, are more prone to fires. Concave 

areas such as valleys, retain moisture for longer periods, 

reducing fire susceptibility. The distribution of curvature 

types significantly influences fire ignition and spread 

patterns28. 

 

Terrain Ruggedness Index (TRI): The Terrain 

Ruggedness Index (TRI) quantifies the complexity of the 

terrain by measuring elevation changes within a specific 

neighborhood. TRI values in the study area ranged from 

smooth (0–0.286) to highly rough (0.656–1). Areas with 

higher TRI values represent rugged terrains that can act as 

natural barriers to fire spread. However, these areas also 

hinder firefighting efforts due to their inaccessibility. 

Conversely, smoother terrains with lower TRI values are 

more prone to rapid fire propagation due to uniform 

topography28. 

 

GIS-based fuzzy analytical hierarchy process (FUZZY-

AHP): The Analytical Hierarchy Process (AHP), developed 

by Saaty29, is a widely-used multi-criteria decision-making 

tool that structures complex problems into hierarchical 

levels. It synthesizes expert opinions and is applied in both 

academic and industrial settings to tackle decision-making 

challenges. Despite its broad use, AHP faces limitations such 

as reduced effectiveness when the number of criteria and 

alternatives increase. Difficulty in handling the ambiguity is 

inherent in expert judgments. These limitations can impact 
the method's performance, especially in real-world 

applications18,28. To address these shortcomings, the 

integration of fuzzy logic (FL) into AHP, known as Fuzzy-
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AHP, has gained traction. Fuzzy logic, proposed by Zadeh35, 

deals with uncertainty by using membership values between 

0 and 1 which represent the degree of an element’s 

association within a set. Fuzzy-AHP helps to overcome the 

ambiguity in expert judgment and is particularly effective in 

situations where precise data is unavailable. The 

combination of qualitative and quantitative methods makes 

Fuzzy-AHP ideal for applications like forest fire 

susceptibility mapping where linguistic terms are assigned 

numerical values and fuzzy numbers represent the relative 

importance of factors5,35,37. 

 

Geometric mean fuzzy-AHP method: In this study, 

Buckley’s4 Fuzzy-AHP method was employed to analyze 

forest fire risk factors and delineate susceptibility zones. The 

process followed several key steps: 

The primary objective was established and a hierarchical 

structure was constructed to identify risk factors and their 

corresponding sub-factors. A pairwise comparison matrix 

was created where each element [𝑎̃ij]k represents the 

preference of the kth expert for risk factor i over risk factor j. 

The reciprocal relationship is given by (𝑎̃ij)⋅(𝑎̃ji)=1 (Saaty)29. 

 

The average pairwise comparison matrix [a] was computed 

by averaging the preferences of all experts using equation 

(1):  

 

𝐴𝑖𝑗 =
∑  (𝑎𝑖𝑗1+𝑎𝑖𝑗2  +⋯+𝑎𝑖𝑗𝑘) 𝑛

𝑘=1
𝑛

                                                (1)    

 

where n denotes the number of experts involved.   

 

   

   

   

   

 

  

Figure 3: Forest Fire Inducing Parameters 

(a) Rainfall; (b) Relative Humidity; (c) Soil Moisture; (d) Wind Speed; (e) LST; (f) LULC; (g) NDVI; (h) dNBR;  

(i) elevation; (j) Slope; (k) Aspect; (l) Curvature; (m)TRI 
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The AHP weights were calculated and validated based on the 

consistency ratio (CR). If CR≥0.10, the matrix was revised 

to ensure reliability29. A fuzzy pairwise comparison matrix 

𝑎̃ was constructed, with elements represented as fuzzy 

values derived from the linguistic scale and triangular fuzzy 

number (TFN) conversion methods4. 

 

The fuzzy geometric mean for each risk factor Ri  was 

estimated using equation (2):  

 

𝑅𝑖𝑗 = {∏ 𝐴̅𝑖𝑗
𝑛
𝑗=1 }

1/𝑛
= (Ã𝑖1 ∗ Ã𝑖2 ∗ Ã𝑖3 ∗. . . Ã𝑖𝑛)1/𝑛        (2) 

 

The vector of fuzzy geometric risk factors was then 

formulated as:  

 

𝑅𝑖 = [𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑛 ]𝑇 

 

The fuzzy relative weights Wi, were determined using 

equation (3):  

 

𝑊𝑖   = 𝑅̃𝑖 ∗ [∑ 𝑅𝑗
𝑛
𝑗=1 ]

−1
                                                         (3) 

 

The fuzzy weights were converted into crisp values using the 

CoA method, as shown in equation (4):  

 

𝑊𝑖 =  𝐿.𝑊𝑖 +𝑀.𝑊𝑖+𝑈.𝑊𝑖
3

                                                               (4) 

 

The de-fuzzified weights were standardized using equation 

(5): 

 

𝑊𝑁𝑖 = 𝑊𝑖/(∑ 𝑤𝑖
𝑛
𝑖=1                                                           (5) 

 

Finally, all thematic layers were combined to generate the 

FFS map using equation (6):  

 

𝐹𝐹𝑆 = ∑ 𝑥𝑖 . 𝑊𝑁𝑖
𝑛
𝑖=1                                                             (6) 

 

where WNi  represents the normalized fuzzy weight for factor 

Xi. 

Forest fire susceptibility mapping: The Forest fire 

susceptibility (FFS) mapping in the Kodaikanal Hill Range 

was conducted using a GIS-based Fuzzy Analytical 

Hierarchy Process (Fuzzy-AHP), which integrated thirteen 

key factors influencing forest fire occurrence. These factors, 

categorized into physiographic and climatic elements, were 

ranked in terms of influence through pairwise comparison 

matrices based on expert judgment and fuzzy logic. The 

climatic factors ranked highest in influence, followed by 

physiographic ones, with rainfall, relative humidity and 

windspeed being the top contributors. Fuzzy weights for 

each factor were calculated and validated with a consistency 

ratio (CR) of 0.091, below the acceptable threshold of 0.1, 

confirming the robustness of the methodology25. 

 

The final FFS map was generated by integrating normalized 

weights into thematic layers using ArcGIS, classifying the 

study area into five susceptibility zones. Approximately 

31% of the Kodaikanal Hill Range was found to have high 

or very high fire susceptibility, primarily in lower elevations 

with dense vegetation, steep slopes and proximity to human 

settlements. Higher elevations, with cooler climates and 

sparse vegetation, exhibited lower fire risk. These results 

align with findings from similar ecologically sensitive 

regions, providing valuable insights for fire management 

and mitigation strategies2. 

 

MAP validation using ROC-AUC: To ensure model 

reliability, the Forest Fire Susceptibility (FFS) map 

underwent validation using VIIRS-derived historical fire 

data (375m resolution) from 2023 and 2024. Performance 

assessment through Receiver Operating Characteristic–Area 

Under Curve (ROC-AUC) analysis yielded a high accuracy 

score of 0.824, confirming the robustness of the model's 

predictive capabilities. This outcome underscores the 

effectiveness of the GIS-based Fuzzy-AHP methodology in 

capturing the complexities of forest fire risk assessment and 

highlights its potential as a reliable tool for spatial risk 

mapping17.

 

Table 1 

Pairwise Comparison Matrix 
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Table 2 

Fuzzy Pairwise Comparison Matrix 

 
 

Table 3 

Defuzzification of Weight (Fuzzy AHP) 

 
 

 
Figure 4: Forest Fire Susceptibility Map 
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Figure 5: Pie Chart of Susceptibility Area coverage 

 

 
Figure 6: ROC-AUC Curve 

 

 
Figure 7: Residential Area Vulnerability Map 
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Figure 8: Road Networks Vulnerability Map 

 

Analysis of vulnerability to forest fires by anthropogenic 

factors: The vulnerability of anthropogenic infrastructure to 

forest fires was further analyzed by overlaying the FFS map 

with road networks and settlement areas. The results 

indicated that approximately 28.68% of the total road length 

(155.48 km out of 542 km) and 30% of settlement areas 

(10.32 sq. km out of 24.6 sq. km) fall within high or very 

high susceptibility zones. Roads and settlements in these 

areas act as both ignition points and conduits for fire spread, 

particularly in regions with dry vegetation and steep slopes. 

These findings emphasize the critical role of anthropogenic 

factors in exacerbating forest fire risks and underscore the 

need for targeted mitigation strategies such as creating 

firebreaks, regulating human activities near forest edges and 

enhancing firefighting resources in vulnerable zones33. 

 

Discussion 
The spatial analysis of fire susceptibility demonstrated 

considerable variability across the Kodaikanal Hill Range. 

Areas at lower elevations, especially those covered by 

tropical moist deciduous forests, exhibited heightened 

vulnerability due to conducive climatic factors and 

intensified human presence. In contrast, higher elevations, 

characterized by Shola forests and grasslands, exhibited 

lower susceptibility attributed to cooler temperatures, higher 

moisture levels and reduced human interference. Elevation 

emerged as a key indirect factor influencing fire 

vulnerability by regulating parameters such as temperature, 

rainfall and vegetation type27.  
 

The integration of physiographic and climatic factors 

through the Fuzzy-AHP approach provided a comprehensive 

understanding of forest fire dynamics in the region. The 

model’s ability to accurately classify high-risk zones was 

validated using historical fire data, demonstrating its utility 

for informed decision-making in forest fire management. 

These findings offer critical insights for policymakers, forest 

managers and disaster management authorities, enabling the 

formulation of region-specific strategies to mitigate the 

adverse impacts of forest fires while promoting ecological 

conservation14. 

 

Future Perspectives  
 Establish firebreaks near roads and settlements using 

fire-resistant, climate-adapted plants to prevent fire 

spread during extreme weather conditions. 

 Focus on planting fire-resistant species that can 

withstand changing climate patterns, reducing fuel loads 

and enhancing ecosystem resilience. 

 Enforce stricter controls on open burning and agricultural 

fires, particularly during dry seasons, to minimize 

human-induced fire risks. 

 Use real-time climate and weather data to improve fire 

predictions and enhance early warning systems, focusing 

on temperature and rainfall patterns. 

 Educate local populations on fire prevention, using both 

local knowledge and climate data to adapt to shifting fire 

risks. 

 

Conclusion 
The Kodaikanal Hill range, known for its rich biodiversity 

and ecological importance, faces significant forest fire risks 

due to a combination of physiographic, climatic and human-

related factors. This study employed a GIS-based Fuzzy 

Analytical Hierarchy Process (Fuzzy-AHP) to develop a 

comprehensive Forest Fire Susceptibility (FFS) map, 

integrating critical factors such as slope, vegetation density, 

elevation, climatic variables and proximity to human 

settlements. The analysis revealed that approximately 

31.26% of the region was classified as highly or very highly 

susceptible to forest fires, with physiographic factors like 

slope, vegetation density (NDVI) and curvature being 

primary contributors. Climatic factors, such as temperature 
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and wind speed, further intensified the fire risk. Model 

validation with historical fire data resulted in a strong Area 

under Curve (AUC) score of 0.824, confirming the accuracy 

and reliability of the methodology. Human factors, including 

road networks and settlement proximity, also exacerbated 

fire risks, with 28.68% of road length and 30% of settlements 

found in high-risk zones. Lower elevations, characterized by 

higher temperatures and dense vegetation, emerged as the 

most fire-prone, while higher elevations exhibited reduced 

susceptibility.  

 

The study underscores the urgency of implementing 

strategic fire mitigation measures including the 

establishment of firebreaks near critical infrastructures, 

restricting human interventions in high-risk zones and 

fostering afforestation with fire-resistant plant species. 

Despite some limitations, including expert-driven fuzzy 

weight assignments and dataset constraints, this study 

provides valuable insights for forest managers and 

policymakers in the Kodaikanal Hill range, offering a robust 

framework for forest fire management. Future studies could 

expand the GIS-Fuzzy AHP approach to other ecologically 

sensitive regions and incorporate real-time fire data to 

enhance early warning systems and resource allocation8. 
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